Digimatic Indicators

Comparison measuring instruments which ensure high quality, high accuracy and reliability.

ABLOLUTE Digimatic Indicator ID-CX SERIES 543 - Standard Type

- Employing the ABSOLUTE Linear Encoder, the Signal ID-C always displays the spindle "Absolute Position" from the origin at poweron.
*1 Regarding origin setting, refer to "Origin Setting of Digimatic Indicators" on page F -18.
- Thanks to the ABSOLUTE Linear Encoder, reliability has been increased due to elimination of over-speed errors.
- Tolerance-judging measurement is available by setting upper and lower limit values.

Tolerance judgment result can be enlarged.

- Battery life of approx. 7,000 hours in continuous use has been achieved with only 1 pc of battery.
- Equipped with a data output port that enables incorporation into measurement networking and statistical process control systems.

- Large LCD

The large LCD incorporates 11 mm characters giving 1.5 times the character area of conventional products (which display 8.5 mm characters) making measurement values much easier to read.

- Three large buttons

The popular three-large button design, which is used in products such as the ABS coolant proof Digimatic indicators ID-N/B, makes buttons easier to press and operations easier to perform.

Count direction switching, tolerance judgment setting, resolution switching, scale factor setting, and function lock setting

- inch/mm conversion
(inch/mm models)

- 330° rotary display

The display can be rotated 330°, allowing use at a position where you can easily read the measurement value.

- Calculation: $\mathrm{f}(\mathrm{x})=\mathrm{Ax}$

Mounting the ID-CX on a measuring jig and setting the calculation factor (to any value) allows direct measurement without using a conversion table and improves measurement efficiency.

Usage example
Note: The measuring jig is not supplied with the ID-CX.

- Function locking

Ensures reliability of measurement by locking the settings to prevent preset function settings from being changed by mistake.

ABSOLUTE

(Refer to page VIII for details.)

Technical Data
Accuracy: Refer to the list of specifications (excluding quantizing error)
Resolution:
0.01 mm type $\quad 0.01 \mathrm{~mm}$ 0.001 mm type $\quad 0.01 \mathrm{~mm} / 0.001 \mathrm{~mm}$ $.0005 " / 0.01 \mathrm{~mm}$ type $.0005 " / 0.01 \mathrm{~mm}$ $.00005 " / 0.001 \mathrm{~mm}$ type $.0005^{\prime \prime} / .0001^{\prime \prime} / .00005^{\prime \prime} /$ $0.01 \mathrm{~mm} / 0.001 \mathrm{~mm}$
Display: 6-digit LCD and sign
Scale type: ABSOLUTE electrostatic linear encoder
Max. response speed: Unlimited (Measurement by scanning can not be performed)
Measuring force: Refer to the list of specifications Stem dia.: 8 mm (ISO/JIS type) or 3/8" (ANSI/AGD type)
Standard contact point: 901312 (ISO/JIS type)
21BZB005 (ANSI/AGD type)
Battery: SR44 (1 pc.), 938882
Battery life: Approx. 7,000 hours under normal use Dust/Water protection level: IP42

Functions

Preset, Zeroset, GO/ \pm NG judgment, Counting direction switching, Power ON/OFF, Simplified calculation, Function lock, Data hold, Data output, inch/mm conversion (inch/mm models)
Alarm: Low voltage, Counting value composition error,
Overflow error, Tolerance limit setting error

Optional Accessories

21EZA198: Spindle lifting lever ($12.7 \mathrm{~mm} / 5^{\prime \prime}$ ISO/IIS type)
21EZA199: Spindle lifting lever ($12.7 \mathrm{~mm} / .5^{\prime \prime}$ ANS//AGD type)
21EZA105: Spindle lifting knob ($12.7 \mathrm{~mm} / 5^{\prime \prime} \mathrm{ISO} / \mathrm{JS}$ type)*
21EZA150: Spindle lifting knob ($12.7 \mathrm{~mm} / 5^{\prime \prime}$ ANS/AGD type)*
21EZA197: Spindle lifting knob ($25.4 \mathrm{~mm} / 1^{\prime \prime}$)
21EZA200: Spindle lifting knob ($50.8 \mathrm{~mm} / 2^{\prime \prime}$ models)
540774: Spindle lifting cable 12.7 mm and 25.4 mm
02ACA571: Auxiliary spindle spring ($25.4 \mathrm{~mm} / 1^{\prime \prime}$ models)**
02ACA773: Auxiliary spindle spring ($50.8 \mathrm{~mm} / 2^{\prime \prime}$ models)**
101040: Lug-on-center back ($25.4 \mathrm{~mm} / 1^{\prime \prime}$ and $50.8 \mathrm{~mm} / 2^{\prime \prime}$, ISO/IIS type)
101306: Lug-on-center back ($25.4 \mathrm{~mm} / 1^{\prime \prime}$ and $50.8 \mathrm{~mm} / 2^{\prime \prime}$, ANSI/AGD type)

* Not available for low measuring force models.
** Required when orienting the indicator upside down.
137693: Lifting lever
(for measuring range: 25.4 and 50.8 mm)
(supplied with 25.4 mm and 50.8 mm models as standard.)
- SPC Cable:

1 m (905338)
2m (905409)

- Connecting Cables for U-WAVE-T: 160 mm (02AZD790F)
For footswitch (02AZE140F)
Refer to page A-15 for details.
- Digimatic Mini-Processor DP-1VR: 264-504
- Contact points for Mitutoyo's dial indicators (Refer to pages F-46 to F-49 for details.) Interchangeable backs for 2 series (Refer to pages F-50 for details.)
- Measuring stands

Specifications are subject to change without notice.

Setting measuring force on low measuring force models

- 543-404/404B/405/405B/406/406B

Spindle orientation	Spring	Weight approximately 0.1 N$)$	Maximum measuring force
Pointing vertically downward	Yes	Yes	No
	No	Yes	0.5 N or less
	No	No	0.4 N or less
Horizontal	Yes	No	0.3 N or less

Note) Operation using configurations other than shown above is not guaranteed.

- 543-394/394B/395/395B/396/396B

Spindle orientation	Spring	Weight (approximately 0.1N)	Maximum measuring force
	Yes	Yes	0.7 N or less
	No	No	0.6 N or less
	No	Nes	0.4 N or less
Horizontal	Not guaranteed		

Note) Operation using configurations other than shown above is not guaranteed.

Milutoyo
Refer to Catalog E4330-543 "ABS Digimatic Indicator ID-CX" for details.

SPECIFICATIONS

Metric								
Order No. (w/ lug, flat-back)	Resolution	Range	Overall*	Measuring force	Remarks			
$\mathbf{5 4 3 - 3 9 0}$	$\mathbf{5 4 3 - 3 9 0 B}$	0.001 mm	12.7 mm	0.003 mm	1.5 N or less	-		
$\mathbf{5 4 3 - 3 9 4}$	$\mathbf{5 4 3 - 3 9 4 B}$	0.001 mm	12.7 mm	0.003 mm	$0.4 \mathrm{~N}-0.7 \mathrm{~N}$	Low measuring force		
-	$\mathbf{5 4 3 - 4 7 0 B}$	0.001 mm	25.4 mm	0.003 mm	1.8 N or less	-		
-	$\mathbf{5 4 3 - 4 9 0 B}$	0.001 mm	50.8 mm	0.005 mm	2.3 N or less	-		
$\mathbf{5 4 3 - 4 0 0}$	$\mathbf{5 4 3 - 4 0 0 B}$	0.01 mm	12.7 mm	0.02 mm	0.9 N or less	-		
$\mathbf{5 4 3 - 4 0 4}$	$\mathbf{5 4 3 - 4 0 4 B}$	0.01 mm	12.7 mm	0.02 mm	$0.2 \mathrm{~N}-0.5 \mathrm{~N}$	Low measuring force		
-	$\mathbf{5 4 3 - 4 7 4 B}$	0.01 mm	25.4 mm	0.02 mm	1.8 N or less	-		
-	$\mathbf{5 4 3 - 4 9 4 B}$	0.01 mm	50.8 mm	0.04 mm	2.3 N or less	-		

Hysteresis*: $0.001 \mathrm{~mm} / 0.01 \mathrm{~mm}$ Resolution Type: 0.002 mm 0.01 mm Resolution Type: 0.02 mm

Repeatability*: $0.001 \mathrm{~mm} / 0.01 \mathrm{~mm}$ Resolution Type: 0.002 mm 0.01 mm Resolution Type: 0.02 mm

Inch/Metric

Order No. (w/ lug, flat-back)		Resolution	Range	Overall*	Measuring force	Remarks
$\mathbf{5 4 3 - 3 9 1}$	$\mathbf{5 4 3 - 3 9 1 B}$	$.00005^{\prime \prime} / 0.001 \mathrm{~mm}$	$.5^{\prime \prime}$	$.0001^{\prime \prime}$	1.5 N or less	-
$\mathbf{5 4 3 - 3 9 2}$	$\mathbf{5 4 3 - 3 9 2 B}$	$.00005^{\prime \prime} / 0.001 \mathrm{~mm}$	$.5^{\prime \prime}$	$.0001^{\prime \prime}$	1.5 N or less	-
$\mathbf{5 4 3 - 3 9 5}$	$\mathbf{5 4 3 - 3 9 5 B}$	$.00005^{\prime \prime} / 0.001 \mathrm{~mm}$	$.5^{\prime \prime}$	$.0001^{\prime \prime}$	$0.4 \mathrm{~N}-0.7 \mathrm{~N}$	Low measuring force
$\mathbf{5 4 3 - 3 9 6}$	$\mathbf{5 4 3 - 3 9 6 B}$	$.00005^{\prime \prime} / 0.001 \mathrm{~mm}$	$.5^{\prime \prime}$	$.0001^{\prime \prime}$	$0.4 \mathrm{~N}-0.7 \mathrm{~N}$	Low measuring force
-	$\mathbf{5 4 3 - 4 7 1 B}$	$.00005^{\prime \prime} / 0.001 \mathrm{~mm}$	$1^{\prime \prime}$	$.0001^{\prime \prime}$	1.8 N or less**	-
-	$\mathbf{5 4 3 - 4 7 2 B}$	$.00005^{\prime \prime} / 0.001 \mathrm{~mm}$	$1^{\prime \prime}$	$.0001^{\prime \prime}$	1.8 N or less**	-
-	$\mathbf{5 4 3 - 4 9 1 B}$	$.00005^{\prime \prime} / 0.001 \mathrm{~mm}$	$2^{\prime \prime}$	$.0002^{\prime \prime}$	2.3 N or less**	-
-	$\mathbf{5 4 3 - 4 9 2 B}$	$.00005^{\prime \prime} / 0.001 \mathrm{~mm}$	$2^{\prime \prime}$	$.0002^{\prime \prime}$	2.3 N or less**	-
$\mathbf{5 4 3 - 4 0 1}$	$\mathbf{5 4 3 - 4 0 1 B}$	$.0005^{\prime \prime} / 0.01 \mathrm{~mm}$	$.5^{\prime \prime}$	$.001^{\prime \prime}$	0.9 N or less	-
$\mathbf{5 4 3 - 4 0 2}$	$\mathbf{5 4 3 - 4 0 2 B}$	$.0005^{\prime \prime} / 0.01 \mathrm{~mm}$	$.5^{\prime \prime}$	$.001^{\prime \prime}$	0.9 N or less	-
$\mathbf{5 4 3 - 4 0 5}$	$\mathbf{5 4 3 - 4 0 5 B}$	$.0005^{\prime \prime} / 0.01 \mathrm{~mm}$	$.5^{\prime \prime}$	$.001^{\prime \prime}$	$0.2 \mathrm{~N}-0.5 \mathrm{~N}$	Low measuring force
$\mathbf{5 4 3 - 4 0 6}$	$\mathbf{5 4 3 - 4 0 6 B}$	$.0005^{\prime \prime} / 0.01 \mathrm{~mm}$	$.5^{\prime \prime}$	$.001^{\prime \prime}$	0.2 N - 0.5 N	Low measuring force
-	$\mathbf{5 4 3 - 4 7 5 B}$	$.0005^{\prime \prime} / 0.01 \mathrm{~mm}$	$1^{\prime \prime}$	$.001^{\prime \prime}$	1.8 N or less**	-
-	$\mathbf{5 4 3 - 4 7 6 B}$	$.0005^{\prime \prime} / 0.01 \mathrm{~mm}$	$1^{\prime \prime}$	$.001^{\prime \prime}$	1.8 N or less**	-
-	$\mathbf{5 4 3 - 4 9 5 B}$	$.0005^{\prime \prime} / 0.01 \mathrm{~mm}$	$2^{\prime \prime}$	$.0015^{\prime \prime}$	2.3 N or less**	-
-	$\mathbf{5 4 3 - 4 9 6 B}$	$.0005^{\prime \prime} / 0.01 \mathrm{~mm}$	$2^{\prime \prime}$	$.0015^{\prime \prime}$	2.3 N or less**	-

> Hysteresis*: $.0005 " / .0001 " / .0005 " / 0.001 \mathrm{~mm} / 0.01 \mathrm{~mm}$ Resolution Type: $.00010^{\prime \prime} / 0.002 \mathrm{~mm}$ $\quad .0005 " / 0.01 \mathrm{~mm}$ Resolution Type: . 0010 " $/ 0.02 \mathrm{~mm}$

Repeatability*: .0005"/.0001" $/ .0005$ " $/ 0.001 \mathrm{~mm} / 0.01 \mathrm{~mm}$ Resolution Type: . $00010^{\prime \prime} / 0.002 \mathrm{~mm}$
$0005^{\prime \prime} / 0.01 \mathrm{~mm}$ Resolution Type: $.0005^{\prime \prime} / 0.02 \mathrm{~mm}$

* Quantizing error of ± 1 count is excluded
** Plunger direction is up to direction in which spindle is horizontal.

